

CO2 Capture and Storage

California Energy Commission 2007 Integrated Energy Policy Report Committee Workshop

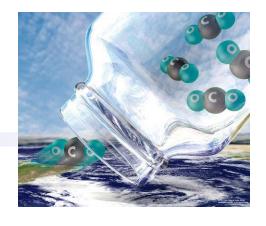
May 29, 2007

Sacramento, CA

Stu Dalton (sdalton@epri.com) Director, Generation

Outline of Presentation

- Capture of CO₂
- International perspective on clean coal
- Discussion




Key Messages CO₂ Capture and Storage (CCS)

- CCS for coal is an important contribution in almost all projections, and very important in EPRI's
- No coal technology with CCS is preferred for all coals, elevations, site conditions
- RD&D is needed, especially >1 MTY storage demonstrations, advanced materials for efficiency improvements and advanced gas turbines capable of using hydrogen to meet cost and efficiency goals
- It will take high CO₂ costs, incentives or stringent control requirements to make CCS competitive

Preparing for Carbon Constraints

CO₂ Capture

- Plant Efficiency
- Capture Technology
- Capture Pilots
- Capture Demonstrations

- Test Multiple Geologies
- Well Integrity
- Monitoring

- Liability
- Health
- Public Acceptance

Multiple Challenges Requiring Concurrent Resolution.

Options for Reducing CO₂ from Coal Plants

Generating Technology CO₂ Approach Challenges

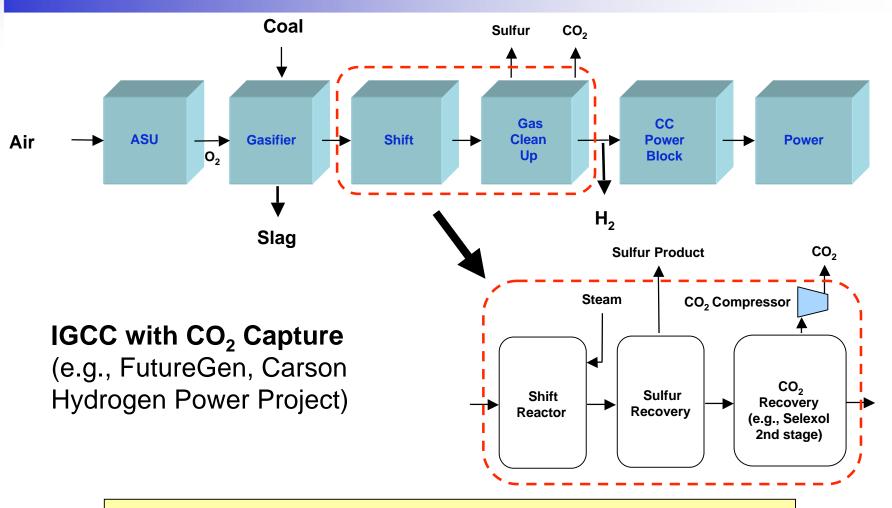
IGCC Improve Efficiency Cost & Integration of IGCC

Capture CO₂ Storage

Pulverized Coal Improve Efficiency Integration of CO₂ Capture

Capture CO₂ Penalty of Capture CO₂

Storage


Oxy Firing Improve Efficiency Technology (O₂)

Production of CO₂ Storage

CO₂ Storage Policy a Challenge for All Technologies.

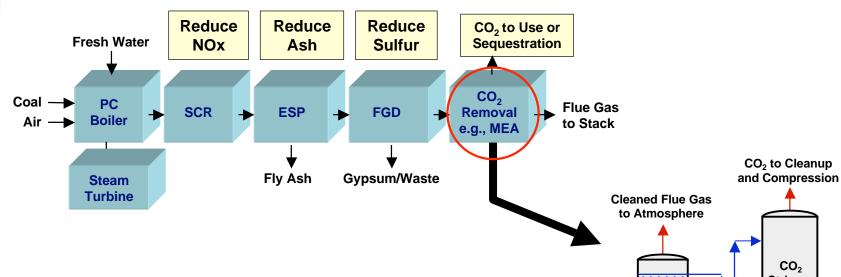
Integrated Gasification Combined Cycle (IGCC) With CO₂ Removal

Needs Space, Energy and Integration.

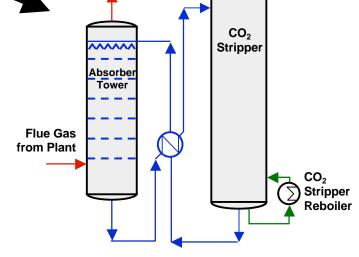
Coal Gasification Plants w/CO₂ Capture (Today)

- IGCC and CO₂ removal offered commercially:
 - Have not operated in an integrated manner
- Three U.S. non-power facilities and many plants in China recover CO₂
 - Coffeyville
 - Eastman
 - Great Plains
- Great Plains recovered CO₂ used for EOR:
 - 2.7 million tons CO₂ per year
 - ~340 MWe if it were an IGCC

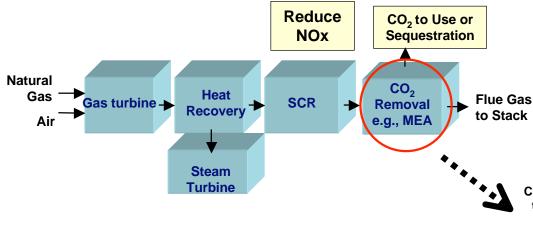
The Great Plains Synfuels Plant http://www.dakotagas.com/Companyinfo/index.html

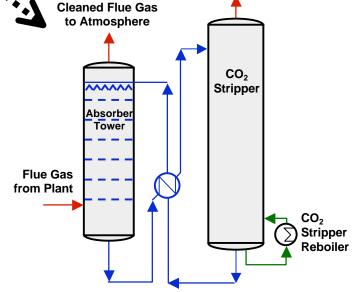


Weyburn Pipeline
http://www.ptrc.ca/access/DesktopDefault.aspx



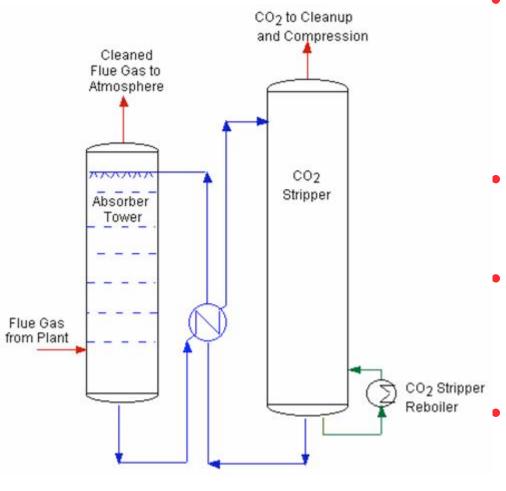
Pulverized Coal With CO₂ Capture "Today"


- Pre-condition Flue Gas (Clean)
- Absorb CO₂
- Strip CO₂
- Requires significant energy


Needs Space, Integration and Energy.

Natural Gas With CO₂ Capture

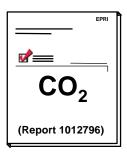
- Pre-condition Flue Gas (Clean if needed)
- Absorb CO₂
- Strip CO₂
- Requires significant energy



Needs Space, Integration and Energy.

CO₂ to Cleanup and Compression

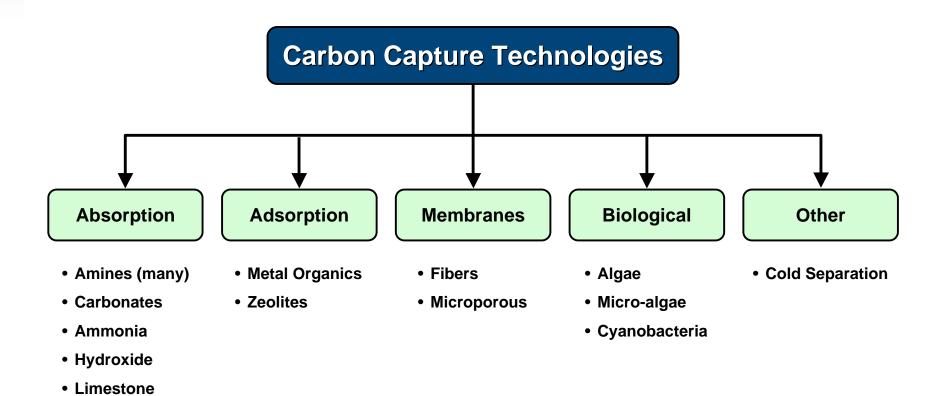
CO₂ Capture by Chemical Absorption (anything that likes to capture CO₂ does not like to let it go)


- Amine type processes are commercially available -Fluor, Kerr McGee, MHI and have been built at 300 mt/day CO₂ (500 MW PC produces ~10,000 mt/day CO₂)
- Requires extensive flue gas pretreatment
 - Essentially no NO_x or SO₂
- Large reboiler steam requirement
 - » Large net output reduction
 - » Make-up power source for Retrofit of existing plant?
 - Looking at options for reduced steam consumption (e.g., chilled ammonia)

PC Operating Units w/ CO₂ Capture (Today)

- Three U.S. small plants in operation today:
 - Monoethanolamine (MEA) based
- CO₂ sold as a product or used:
 - Freezing chickens
 - Soda pop, baking soda
 - $\sim 140 \text{ } \text{/ton CO}_2$
- 300 metric tons recovered per day:
 - ~15 MWe power plant equivalent
- Many pilots planned and in development:
 - 5 MW Chilled Ammonia Pilot
 - Many other processes under development

AES Cumberland ~ 10 MW



Assessment of Post-Combustion Carbon Capture Technology

Only Demonstrated on a Small Scale to Date.

Many Post Combustion CO₂ Capture Technologies Under Development

Which might meet DOE goals of \leq 10% energy penalty, \leq 20% COE increase?

- 1-5 MW demo in 5 yr meeting/approaching one goal
- 1-5 MW demo in 10 yr at/better than both goals

0.25 MW Menlo Park SRI Lab Pilot Used to Confirm Thermal Balance, Provide Design Guidance for Pilots Larger Pilots planned in Wisconsin, West Virginia, Demo in Oklahoma

First absorber details Absorber towers, water wash and hold tanks

IGCC Units Designed for CO₂ Capture at Commissioning

- Current EPRI CoalFleet for Tomorrow® IGCC Knowledge Base of Gasification Projects
 - 66 North America projects
 - 38 International projects

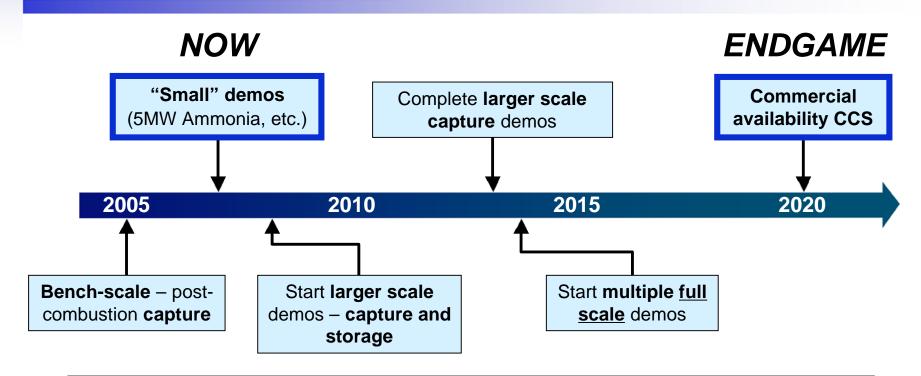
15 Gasification Projects Aimed at C&S from Day 1

- Carson Hydrogen Power Proj.
- Xcel IGCC high altitude
- FutureGen Demo
- USA Undisclosed
- Hunton 10–15%
- Indiana Gasification
- North America Undisclosed

- RWE
- Shell Australia
- Stanwell ZeroGen Demo
- Centrica / Progressive Energy
- E.ON UK
- Hatfield UK
- GreenGen Demo China
- BP Peterhead UK (cancelled)

Potential Timeline for Full Scale CO₂ capture and Storage

2005 2010 2015 2020


- Operate and learn by doing a full scale capture, transport and storage system
 - test the operability, integration and performance and economics
- Time to permit, design and build a full scale capture facility as a new unit – at least 5 years
- Testing of CO₂ storage may take 3-4 years
- Verification of the site once injection is complete should be monitored for several years (3-4 likely minimum)

15

- BY 2020
 - Large scale demonstrations and a few pioneering installations like FutureGen, BP Carson
 - Pioneering post combustion capture like AEP Northeastern plant with chilled ammonia

A Roadmap for CO₂ Storage and Post-Combustion Capture

Needs: Multiple large-scale CAPTURE and STORAGE demos

Timing: 2020 endgame → start today, parallel paths

Realistic? A challenge – technical, policy, funding

Source: DOE-NETL Carbon Sequestration R&D Roadmap Modified to add Chilled Ammonia example



What's Next – What's Needed for CCS

- Acceleration of the Industry efforts worldwide in addition to governmental efforts – new pilots, demonstrations, initiatives
- Cost reductions and efficiency improvements for capture "systems"
- Large scale testing of storage of CO₂ in deep saline reservoirs:
 - Permitting w/ acceptable risks
 - EPRI invites organizations to contact us if interested in support for accelerated large scale CO₂ capture and storage demonstrations and other work related to CO₂.

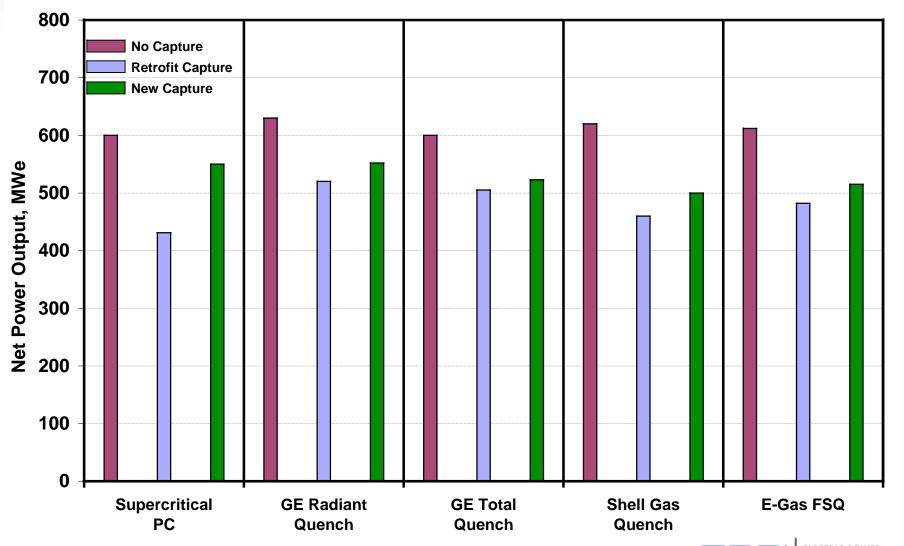
Questions?

 More information on CO₂ capture and storage is available in the current EPRI journal available free at www.epri.com

Backup Slides

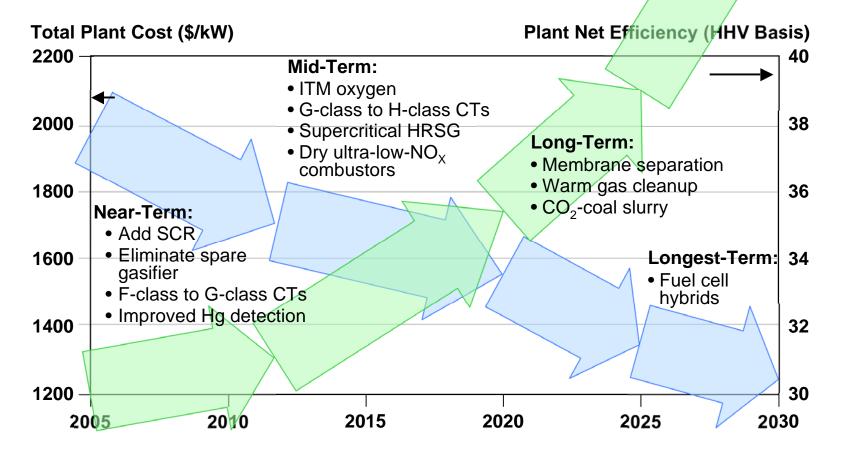
19

GHG CO₂ Performance Standard (1100#/MWh)

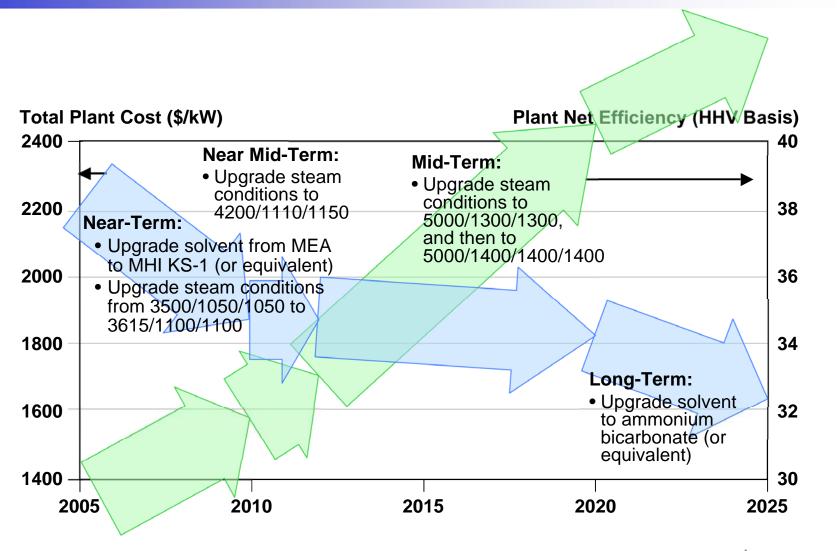

 1100 lb/MWh target (typical modern plant with no CCS on western coal ~ 38% efficiency ~ 1950 #/MWh)

Discussion:

- Necessitates >45% reduction from an IGCC or PC plant with 37–39% efficiency
- In short term, partial CO₂ capture may become an option
 - For IGCC this could mean treatment of one "train" or a single "shift" reactor and partial treatment
 - For PC this will mean a big scale up of technology and large steam use but likely ½ the gas treated @ 90%
 - Possible off peak steam use or solar assist in regeneration might be plausible (Imperial College in UK studying)



EPRI PC and IGCC Net Power Output With and Without CO₂ Capture (Illinois #6 Coal)


IGCC RD&D Augmentation Plan—Expected Benefits Case:

Slurry-fed gasifier, Pittsburgh #8 coal, 90% availability, 90% CO₂ capture, 2Q 2005 dollars

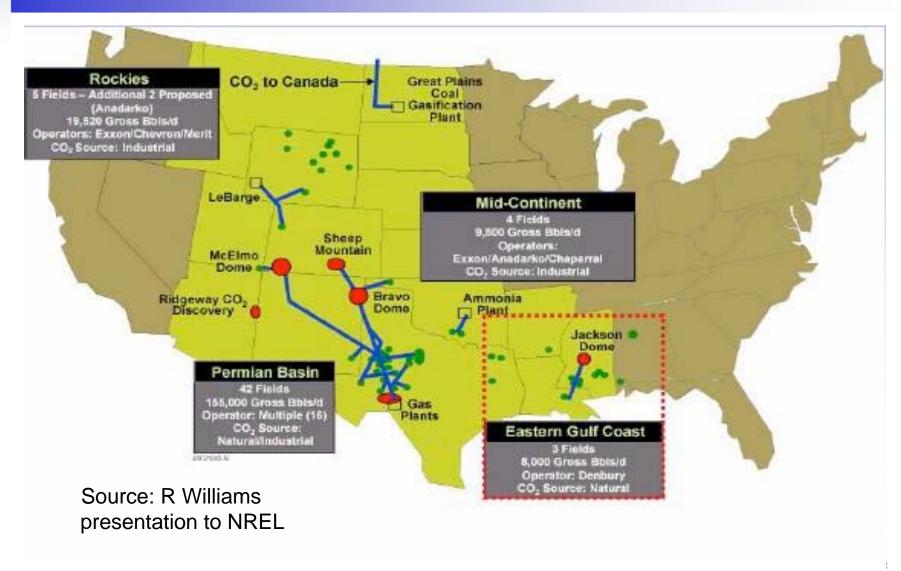
USC PC RD&D Augmentation Plan—Expected Benefits Case:

Pittsburgh #8 coal, 90% availability, 90% CO₂ capture, as reported data from various studies (not standardized)

E.ON UK comments on projects in Europe

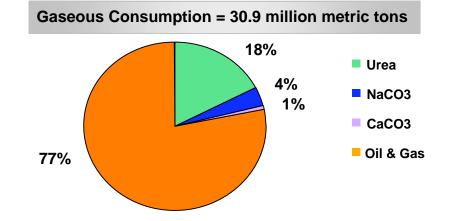
Project	Location	Scale, MW	Timing	Comments
BP/SSE	UK, Peterhead/Miller Now de	sferred	2014	NGCC + CCS, EOR
Vattenfall	Germany, Pilot Germany, Commercial	30 ???	2008 2020	Oxyfuel, no CCS Lignite
Shell/Statoil	Norway	850	2011	NGCC + CCS, EOR
RWE Power	Germany	450	2014	IGCC + CCS
Progressive Energy	UK, Teeside	800	2011	IGCC + CCS, EOR Coal, petcoke
PowerFuels	UK, Hatfield	900	Post 2012	IGCC + CCS
E.ON UK	UK, Killingholme	450	2012	IGCC + CCS
RWE nPower	UK, Tilbury	1000	2016	S/C with CCS
SSE	UK, Ferrybridge	500	?	S/C Retrofit RESEARCH INSTITUTE

GHG CO₂ Performance Standard (1100#/MWh)

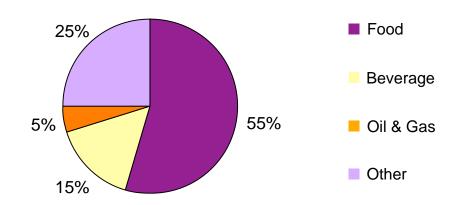

 1100 lb/MWh target (typical modern plant with no CCS on western coal ~ 38% efficiency ~ 1950 #/MWh)

Discussion:

- Necessitates >45% reduction from an IGCC or PC plant with 37–39% efficiency
- In short term, partial CO₂ capture may become an option
 - For IGCC this could mean treatment of one "train" or a single "shift" reactor and partial treatment
 - For PC this will mean a big scale up of technology and large steam use but likely ½ the gas treated @ 90%
 - Possible off peak steam use or solar assist in regeneration might be plausible (Imperial College in UK studying)



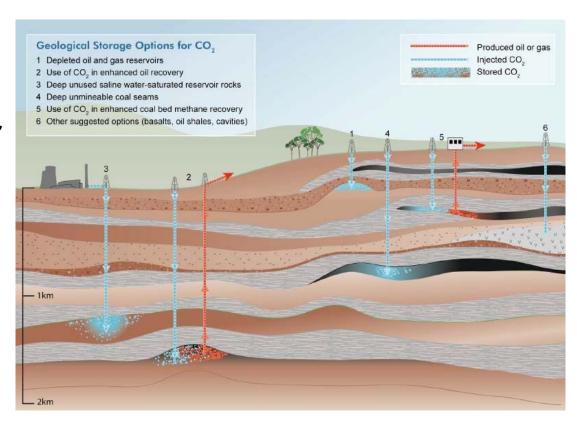
US Experience with CO₂ Pipelines for EOR


Current US Annual CO₂ Utilization

Mainly Enhanced
Oil Recovery

Liquid/Solid Consumption = 7.1 million metric tons

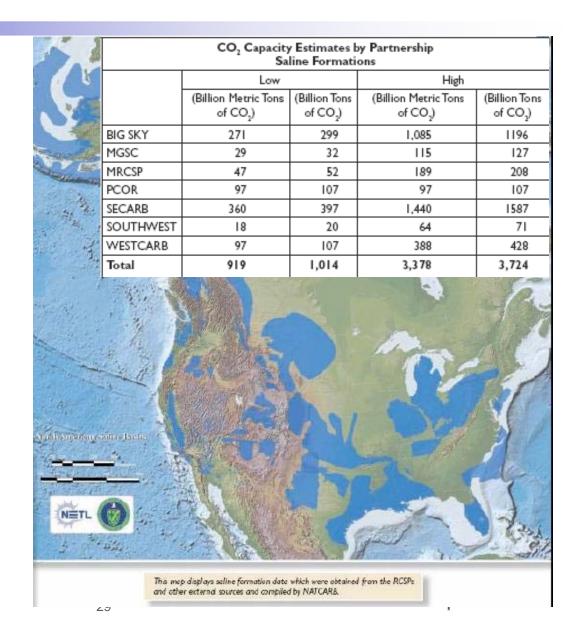
Mainly Food


~40M Tons of Use vs. 6B Tons Currently Emitted

Source: Howard Herzog / MIT Laboratory for Energy and the Environment

CO₂ Sequestration/Storage – Main Focus of Injection Into Geological Formations

- Saline reservoirs
 - 100's yrs capacity
 - Little experience
- Economical, but lesser capacity options
 - Depleted oil & gas reservoirs/enhanced oil recovery
 - Unmineable coal beds/enhanced coal-bed methane recovery
- Deep ocean injection not acceptable today



Courtesy of Peter Cook, CO2CRC

How Does Saline Reservoir Sequestration Work?

- Inject into deep, high salinity reservoirs
 - No impact on drinking water
- Limited data
 - Few wells penetrate reservoirs
- Large volume potential for storage
 - Order of magnitude larger than oil
- Reasonably well distributed across country

